مدرسه زبان برنامه‌نویسی PYTHON

وبلاگی جهت معرفی - آموزش و تحلیل زبان برنامه نویسی ‍پایتون

مدرسه زبان برنامه‌نویسی PYTHON

وبلاگی جهت معرفی - آموزش و تحلیل زبان برنامه نویسی ‍پایتون

۳ مطلب با موضوع «پاندا» ثبت شده است

Pandas یک کتابخانه قدرتمند و اوپن سورس پایتون است. کتابخانه Pandas برای دستکاری و تجزیه و تحلیل داده ها استفاده می شود. پانداز از ساختارهای داده و عملکردهایی برای انجام عملیات کارآمد بر روی داده ها تشکیل شده اند.

پانداز برای کار با داده های جدولی مانند صفحات گسترده یا جداول SQL مناسب هستند.

پانداز پایتون برای چه استفاده می شود؟
کتابخانه پانداز عموماً برای علم داده استفاده می شود.

 کتابخانه پانداز همراه با کتابخانه های دیگری که برای علم داده استفاده می شوند استفاده ی گسترده ای دارد. این کتابخانه در کنار کتابخانه NumPy ساخته شده است که به این معنی است که بسیاری از ساختارهای NumPy در پانداز استفاده یا تکرار می شوند.

کتابخانه پانداز در پایتون

داده های تولید شده توسط پانداز اغلب به عنوان ورودی برای رسم توابع در Matplotlib، تجزیه و تحلیل آماری در SciPy و الگوریتم های یادگیری ماشین در Scikit-learn استفاده می شود.

حتما از خود می پرسید چرا باید از کتابخانه پانداز استفاده کنیم؟ کتابخانه Pandas پایتون بهترین ابزار برای تجزیه و تحلیل، تمیز کردن و دستکاری داده ها است.

در اینجا لیستی از کارهایی است که می توانیم با استفاده از پانداز انجام دهیم:

🔴🔵 پاکسازی، ادغام و پیوستن مجموعه داده ها.
🔴🔵 مدیریت آسان داده های از دست رفته (که به صورت NaN نشان داده می شود) در داده های ممیز شناور و همچنین داده های غیرمقطع شناور.
🔴🔵 ستون ها را می توان از DataFrame و اشیاء با ابعاد بالاتر درج و حذف کرد.
🔴🔵 گروه قدرتمند بر اساس عملکرد برای انجام عملیات تقسیم-کاربرد-ترکیب بر روی مجموعه داده ها.
🔴🔵 تجسم داده ها

 

شروع کار با پانداز
بیایید نحوه شروع کار با کتابخانه Python Pandas را ببینیم:

نصب پانداز
اولین قدم در کار با پانداز، اطمینان از نصب بودن یا نبودن آن در سیستم است.  اگر نصب نبود، پس باید آن را با استفاده از دستور pip روی سیستم خود نصب کنیم.

برای مطالعه بیشتر، نگاهی به این مقاله در مورد نصب پاندا در زیر بیاندازید.

installing pandas

با اضافه کردن این خط کد میتوان کتابخانه پانداز را ایمپورت کرد.

import pandas as pd

 

      آموزش گام به گام کتابخانه پانداز در پایتون - به زودی       

۰ نظر موافقین ۰ مخالفین ۰ ۱۱ اسفند ۰۳ ، ۱۹:۵۶
سعید دامغانیان

Pandas vs NumPy | Top 7 Differences You Should Know

مقایسه عملکرد NumPy و Pandas در پروژه‌های بزرگ به عوامل متعددی بستگی دارد. در اینجا به چند نکته کلیدی در این زمینه اشاره می‌شود:

🔴🔴🔴 ۱. سرعت و کارایی

- NumPy:
  - عملکرد بالا: به دلیل استفاده از آرایه‌های چندبعدی و بهینه‌سازی شده برای عملیات عددی، NumPy معمولاً سرعت بسیار بالاتری در محاسبات ریاضی دارد.
  - عملیات برداری: می‌توان با استفاده از عملیات‌های برداری به جای حلقه‌های تکرار، محاسبات را به طرز چشمگیری تسریع کرد.

- Pandas:
  - کاربردی‌تر اما کندتر: Pandas برای کار با داده‌های ساختارمند طراحی شده و به همین دلیل ممکن است در مقایسه با NumPy در برخی عملیات‌ها کندتر باشد. با این حال، قابلیت‌های بیشتری برای تجزیه و تحلیل داده‌ها و کار با داده‌های گم‌شده ارائه می‌دهد.
  - بهینه‌سازی برای داده‌های جدولی: در پروژه‌های بزرگ که داده‌های جدولی دارند، Pandas به خوبی عمل می‌کند و می‌تواند بهینه‌سازی‌هایی انجام دهد که در NumPy ممکن است پیچیده‌تر باشد.

🔴🔴🔴 ۲. مدیریت داده‌ها

- NumPy:
  - مناسب برای داده‌های عددی و محاسباتی. اگر داده‌ها به صورت آرایه‌های عددی ساده باشند، NumPy بهترین گزینه است.

- Pandas:
  - توانایی مدیریت داده‌های پیچیده و مختلط. اگر پروژه شامل داده‌های مختلف (عدد، متن، تاریخ) باشد، Pandas به دلیل قابلیت‌های قوی‌اش برای پاک‌سازی، گروه‌بندی و تجزیه و تحلیل داده‌ها مناسب‌تر است.

🔴🔴🔴 ۳. استفاده از حافظه

- NumPy:
  - به طور کلی از نظر مصرف حافظه بهینه‌تر است، زیرا آرایه‌های NumPy از نوع داده‌های یکسان استفاده می‌کنند و این باعث کاهش overhead حافظه می‌شود.

- Pandas:
  - مصرف حافظه ممکن است بیشتر باشد، به ویژه برای داده‌های بزرگ و مختلط، زیرا هر ستون در یک DataFrame می‌تواند نوع داده متفاوتی داشته باشد.

🔴🔴🔴 ۴. مقیاس‌پذیری

- NumPy:
  - برای محاسبات عددی در مقیاس بزرگ به خوبی عمل می‌کند، اما در مدیریت داده‌های بزرگتر از آرایه‌ها ممکن است محدودیت‌هایی وجود داشته باشد.

- Pandas:
  - می‌تواند به خوبی با داده‌های بزرگ و پیچیده کار کند، اما برای داده‌های بسیار بزرگ (مثلاً در حد ترابایت) ممکن است نیاز به استفاده از ابزارهای دیگر مانند Dask یا PySpark باشد.

🔴🔴🔴 نتیجه‌گیری

در پروژه‌های بزرگ:

- اگر تمرکز بر روی محاسبات عددی و کار با آرایه‌های عددی باشد، NumPy گزینه بهتری است.
- اگر پروژه شامل تجزیه و تحلیل داده‌ها و مدیریت داده‌های پیچیده باشد، Pandas انتخاب مناسبی خواهد بود.

به طور کلی، در بسیاری از پروژه‌ها از هر دو کتابخانه به صورت مکمل استفاده می‌شود.

۱ نظر موافقین ۰ مخالفین ۰ ۰۲ مهر ۰۳ ، ۰۴:۵۳
سعید دامغانیان

NumPy و Pandas هر دو کتابخانه‌های مهمی در پایتون هستند که برای کار با داده‌ها و تحلیل علمی استفاده می‌شوند. با این حال، هرکدام هدف و ویژگی‌های خاص خود را دارند. در ادامه به تفاوت‌های اصلی بین NumPy و Pandas می‌پردازم:

🔴🔴🔴 ۱. هدف اصلی

- NumPy:
  - تمرکز بر روی محاسبات عددی و کار با آرایه‌های چندبعدی.
  - ارائه توابع ریاضی و عملیات‌های خطی به صورت بهینه.

- Pandas:
  - طراحی شده برای تجزیه و تحلیل داده‌ها و مدیریت داده‌های ساختارمند.
  - فراهم آوردن ابزارهایی برای کار با داده‌های جدولی (DataFrames) و سری‌ها (Series).

🔴🔴🔴 ۲. نوع داده

- NumPy:
  - نوع داده اصلی ndarray است که برای آرایه‌های چندبعدی استفاده می‌شود.
  - مناسب برای داده‌های عددی و علمی.

- Pandas:
  - نوع داده اصلی DataFrame برای داده‌های جدولی و Series برای داده‌های یک‌بعدی است.
  - مناسب برای داده‌های مختلط، شامل متن، تاریخ و عدد.

🔴🔴🔴 ۳. امکانات

- NumPy:
  - توابع ریاضی، آمار و جبر خطی.
  - پشتیبانی از عملیات‌های عددی سریع و کارآمد.

- Pandas:
  - امکانات پیشرفته برای پاک‌سازی داده‌ها، گروه‌بندی، ادغام و فیلتر کردن داده‌ها.
  - قابلیت کار با داده‌های گم‌شده و تغییر شکل داده‌ها.

🔴🔴🔴 ۴. سهولت استفاده

- NumPy:
  - مناسب برای کارهای عددی و محاسباتی، اما ممکن است برای مدیریت داده‌های پیچیده چالش‌بر‌انگیز باشد.

- Pandas:
  - بسیار کاربرپسند و مناسب برای تجزیه و تحلیل داده‌ها، با امکاناتی برای راحتی در کار با داده‌ها.

🔴🔴🔴 ۵. عملکرد

- NumPy:
  - بهینه‌سازی شده برای سرعت در محاسبات عددی با آرایه‌ها.

- Pandas:
  - ممکن است در برخی موارد کندتر باشد، زیرا امکانات بیشتری را ارائه می‌دهد و تمرکز بیشتری بر روی داده‌های پیچیده دارد.

🔴🔴🔴 نتیجه‌گیری

NumPy و Pandas در کنار هم ابزارهای قدرتمندی را برای کار با داده‌ها فراهم می‌کنند. برای محاسبات عددی و علمی، NumPy انتخاب بهتری است، در حالی که برای تجزیه و تحلیل داده‌ها و مدیریت داده‌های ساختارمند، Pandas مناسب‌تر است. به طور کلی، در پروژه‌های داده‌کاوی و علم داده، معمولاً هر دو کتابخانه به صورت همزمان استفاده می‌شوند.

۰ نظر موافقین ۰ مخالفین ۰ ۰۲ مهر ۰۳ ، ۰۴:۵۲
سعید دامغانیان